پیشبینی خودکار گرههای ترافیکی با استفاده از مدل سازی شبکه عصبی
نویسنده
چکیده مقاله:
افزایش حجم ترافیک و ایجاد گرههای ترافیکی در راههای بینشهری و همچنین شبکه ترافیک شهری سبب کاهش کارایی شبکه ترافیکی و راههای مورد نظر میشود. پیشبینی و کشف هرچه سریعتر این گرههای ترافیکی میتواند کمک شایانی به حل مشکل و روانسازی جریان ترافیک نماید. شبکههای عصبی مصنوعی نشان دادهاند که با تکیه بر قابلیت یادگیری خود میتوانند عملکرد بسیار مناسبی در این زمینه از خود نشان دهند. هدف اصلی این تحقیق پیشبینی و تشخیص خودکار گرههای ترافیکی با استفاده از مدل شبکه عصبی هوشمند و مقایسه کارایی مدل با مدلهای دیگر موجود است. به طوریکه با استفاده از دادههای آموزشی، شبکه عصبی مصنوعی را به گونهای بیاموزد که بتواند خروجی مورد نظر را تشخیص و در مورد دادههای هدف با موفقیت پیشبینی را انجام دهد. روش تحقیق جهت پیشبینی معماری شبکه از سه پارامتر ورودی و یک پارامتر خروجی استفاده شده است. در این تحقیق از سه نوع شبکه عصبی مصنوعی به منظور پیشبینی و کشف خودکار گرههای ترافیکی استفاده شده است. دادههای مورد استفاده در این تحقیق از اطلاعات واقعی مرکز کنترل ترافیک آزادراه تهران- کرج بهصورت روزانه، هفتگی و ماهیانه میباشد. در ابتدا از شبکه عصبی چند لایه پرسپترون، استفاده شده و شبکه عصبی دیگری که در این تحقیق مورد استفاده قرار گرفته، شبکه نروفازی میباشد و در نهایت از شبکه عصبی تابع مبنای شعاعی به منظور بررسی موفقیت دو شبکه قبلی استفاده شده است. کارایی و دقت مدلهای مختلف براساس بهترین و جامعترین مجموعه شاخصهای ارزیابی جهت سنجش کارکرد هر کدام از مدلها تحلیل شد و براساس مقایسه کارایی آنها نسبت به یکدیگر، مدل پرسپترون با کارایی بهینه معرفی شد. مقایسه نتایج مقادیر پیشبینی شده جریان ترافیکی با مقادیر اندازهگیری شده در واقعیت، نشان میدهد که مدل مطرح شده بهطور رضایتبخشی جریان ترافیکی را پیشبینی میکند.
منابع مشابه
کاربرد الگوریتمهای مختلف یادگیری در پیشبینی قیمت سهام با استفاده از شبکه عصبی
پیشبینی قیمت سهام یکی از موضوعهای مهم مالی است، چرا که دادههای قیمت سهام دارای تغییر پذیری زیاد، پیچیدگی، دینامیک و آشوبگونه است،بنابراین ارتباط نامشخص بین قیمت سهام و عوامل مؤثر کاملا پویا است. بنابراین مسأله پیشبینی قیمت سهام تنها بوسیله یک برنامه کامپیوتری کاردشواری است.در این تحقیق، ابتدا بوسیله آزمون گردش، امکان پیشبینی قیمت سهام شرکت صنایع ملی مس ایران بررسی گردید. سپس رابطه همبستگی هشتبر...
متن کاملمدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی
ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی...
متن کاملمدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی
Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...
متن کاملمدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
متن کاملشبیه سازی و پیشبینی جریان رودخانهها با استفاده از شبکه عصبی و مدل فوریه
مقاله حاضر به بررسی نحوه عملکرد شبکههای عصبی MLP در ارتباط با خروجی مدل فوریه، FSAM، میپردازد. مدل FSAM که مدل شبیه ساز بارش است، تحلیل مدلهای کلاسیک را در قلمرو فرکانس، که توسعه نظریه طیفی فرآیندهای متداول نظیر طیف الگوهای ARIMA را در درون خود دارد، ارائه میدهد. کاربرد همزمان شبکههای عصبی MLP و مدلFSAM، امکان پیش بینی جریان ماه (i) ام را در ارتباط با پیش بینی بارش همان ماه، میسر میسازد...
متن کاملمدل سازی کیفیت زیباشناختی منظر در فضای سبز شهری با استفاده از شبکه عصبی مصنوعی
ارزیابیهای کیفیت منظر عمدتا اشاره به نقش کلیدی عناصر طبیعی و مصنوعی منظر در ایجاد رضایتمندی و درک زیبایی از منظر دارند. هدف از این مقاله مدلسازی ارزیابی کیفیت زیباشناختی منظر با استفاده از شبکه عصبی مصنوعی به منظور کشف روابط حاکم در ساختار منظر و ارتباط عناصر منظر با کیفیت زیباشناختی آن است. جهت انجام پژوهش حاضر چهار بوستان (جمشیدیه، نهج البلاغه، قیطریه، آب و آتش) با تنوع بالا در کیفیت منظر ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 15 شماره 2
صفحات 35- 52
تاریخ انتشار 2018-06-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023